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SUMMARY

Lateral-directional dynamic stability derivatives are presented

for a 0.l-scale model of the XC-142A tilt-wing transport. Th _ stability

d_rivatives were determined from experiments conducted in tL_ Princeton

University Dynamic Track with a dynamically similar model. The tests _

involved various descending flight conditions achieved at constant )_

speed and wing incidence by varying the vehicle angle of attack. The

propeller blade angle and the speed were also changed in the steepest

descent case.

The experimental data were analyzed assuming that the dynamic

motions of the vehicle may be described by linearized equations, with

the lateral-directional characteristics of the full-scale aircraft

also presented and discussed. Results from this experimental investi-

gation indicated that the full_scale aircraft would have a stable

lateral-directlonal motion in level flig_it, with the dynamic motion

becoming less stable as the descent angle was L_creased. No improve-

me_ _n the dynamics w_s noted when the propeller blade angle was

reduced daring the steepest descent s although a subsequent increase

in airspeed caused a further degradation in the lateral-directional

stability which _s characterized by an unstable Dutch-roll oseill_tion.
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INTRODUCTION

_ring thc past decade, there has _een an ever-increasing interest

in the V/STOL type of aircraft, not only because of their unique and

intriguing addition to the field oi aerodyns_ics: Out also because of

the potential offered by these aircraft in a commercial and military

role. An assortment of V/STOL configurations have been tunnel tested,

including tilt-prop, compound, Jet-llft, tilt-wing# and many other

concepts (refs. 1 through 9). Sach configurations offering promise,

either have been built and flight tested 3 or are currently involved in 4

research program (refs. i0 through 18). Most of this _ork, _
a flight

though, has been of a gen ral exploratory nature_ directed towards _
i

either pure aerodynamics or establishing the overall feasibility of the i_

ivariou_ concepts. Investigations to document the classical stability

derivatives, which are a prime ingredient affecting the so-called

handling qualities of the vehicle, have been limited.

To make this stability derivative data available, a number of

V/STOL configurations have been tunnel tested in the Pr_ueeton University

Dynamic Model Track (refs. 5 to 7, and )9 to 21). One of the more recent

vehicles tested has been a O.l-scale model of the four-propeller XC-142_A

tilt-wing transport. Experimental results have included the first quan-

titative information published on the lateral-directional d_c

derivatives of a tilt-wing V/STOL aircraft at i_ forn_d speed (see

ref. 19) and the longitudinal d_c sta_illty eharacteristlcs (see

The purpose of this study vas to extend the infor_tion preeented

1974024326-014



in the previous Princeton bniversity reports dealing with the XC-142A.

Direct quantitative measurements were made of the lateral-directional

transient response tim_ histories for various trim conditions simulating

low-speed, descending flight. These data ware taken at five test con-

ditions representing various combinations of pitch attitude (e), for-

velocity (Uf), and propeller blade angle (_). The wing incidence and

wing flap angle were fixed at 40° and 60°, respectively, throughout the i

entire investigst_on. The resul'ts presented in this report thus

represent the first documentation of the stability derivatives for a

tilt-wing V/STOL transport in descending flight. !

The servo-analysls techniques used to determine the stability i

derivatives from the data available are described in appendix I.

Conversion of the data to full-scale v_lues is discussed in appendix lip

with the results shown in figure 1. Additional information regarding

the static characteristics and control effectiveness for the configu-

rstlon tested, are,presented in reference 22.

I
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DESCRIPTION OF APPARATUS AND EXPERIMENTS

TEST FACILITY

The Princeton University Dynamic Model Track Facility was designed

explicitly for the study of the dynamic stability and control of heli-

copter and V/STOL models for speeds ranging from hover through transi-

tion. Integral components of the test facility include: a 7._O-foot

track, servo-drive carriage, model mounts, measuring transducers and

recording equipment, all of which are located in a building _ith a test

cross section of 30 by 30 feet. The dynamic carriage, which can follow

I the longitudinal velocity excursions of the model 3 has an accelerationJ

potential of 0.6g and a maximum speed of 40 feet per second. A detailed

description o1"the facility and testing techniques employed may be

found in reference 23.

Two of the various methods used to motu_tmodels to the carriage

permit separate meastu'ement of'the classical longitudinal and lateral-

directional degrees of dynamic motion. The longitudinal mount, shewn

in figure 2, permits horizontal and vertical motions of the model

relative to the carriage and allows the model to rotate in the plane

determined by these directions. The horizontal motion is sensed and

used to command the carriage to follow the model in a closed-loop

fashion. Similarly_ the vertical displacement of the model oo_w_ls

the _ to follo_ in the vertical direction. _e lateral-directional

mount lfaimh _ used for this stud_ is shown in f_4_e _. This mount

permits relative motion between the model s_ _Lakage and the

- ._ _ ..'r_.. ".-_.-TT..,11 ;i.,"........ _ _,,_'_......"_ .............. _-_--,._ ......... _..... ,,_,_,..,,,,_._,,_.,_,._............... ,,

1974024326-016



lateral servo-driven carriage to be sensed and used to position the

lateral carriage along the lateral boom. A maximum sideward excursion

of 8 feet is permitted by this arrangement. The yaw degree-of-freedom

is provided by a pivot mounting which allows angular rotation of the

vertical tube supporting the model relative to the lateral servo-

driven carriage. Roll freedom is achieved by a pivot mounting le-ated _

within the fuselage of the model itself which permits the angular

motion in roll relative to the fixed vertical support tube. A schematic _

drawing of the lateral-directional mount is shown in figure 4. Overall 2

the model support and glmbal system allows particular degrees of angular

freedom to be selected. Those not under investigation are locked by a

braking system which also serves to arrest the model motions at the end

of a test run. The gimbal and support systems also serve as references

for measurement of the model motions. This system is similar to the

one used in reference 19, with the roll and yaw axes fixed to the

lateral error linkage; the roll.axis yaws but does not pitch with the

model, while the pitch axis remains fixed to the model. For the pre-

sent study, the descent conditions were s_mlated by altering the pitch

attitude of the model with respect to the carriage. This adjustment

results in an increased aircraft sLn_leof attack since the carriage

velocity is always horizontal. The exact expressions for the vari-

ables and the appropriate equations of motion for this axis system

are presented in appendix I.

The dynamic experiments conducted duriag this stud_ vere_ for
I

the most part, two degcee-of-freedom motions achieved by use of the I
!

[

! II ....................................... ".................................

"1974024326-017



lateral-directlonal mount. These tests included single degree-of-

freedom in yaw (_) and two degree-of-freedom in roll and yaw (_ - 4)

angular motions, and roll angle and sideward velocity (_ - vf) motions

for selected combinations of pitch attitude .(e), forward velocity (Uf)

and propeller blade angle (6). Three degree-of-freedom cases

(_ - _ - vf) were also conducted to analyze the complete lateral-

directional motions of the aircraft.

The Princeton Model Track _acility can also be used to measure

static stability derivatives. The model i_ mounted rigidly to the !

carriage permitting the forces and moments acting on the model to be i

measured with strain gauges. Continuous changes in the variables of

J
interest can be achieved by programming the model or carriage motlons.

Although similar to wind-tunnel testing, a uniform air velocity s free

from turbulence, is offered in the 30 by 50 foot test section. Precise

control of speed is available over a wide range, which includes not

only forward flight but hover and rearward flight as well.

MODEL

The 0.10 scale dynamically similar model constructed for this

experiment is shown in figure 9; drawings of the general az_ement

mad of the airfoil section of the model are shown in figures 6 and 7.

•he model is the one used for the lateral-directiomal stu_ of

_: reference 19, with several modlfleatlone. _hese modiflcatio_o of the

model, sad descriptions of the la_-_Ireetiomal control system,

, ge_mtrie eharemterlstlesof the model propellers, _, and other

pertlnent information _ pre|en1_ in refex_nQe 22.

1974024326-018



6

INSTRUMENTATION

.The basic test instrumentation, employing telemetering and magnetic

tape recordings_ was similar to that used in reference 19. However,

several additions and refinements were made _o the model instrumenta-

tion: these changes are also noted in the data report relating to

this experiment (ref. 22).

F. ,- ..... IIn INIIIII I ..................... _"-"_ _-"-_ _ ~ "_ I
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EXPERIMENTAL RESULTS

STATIC DATA

Measurements of the horizontal force (parallel to the free-stream)

and the vertical force (perpendicular to the free-stream) were made to

determine the descent conditions realized during this program. All •

data were taken in the forward flight mode for a constant wing inci-

dence, iw = 40°, and constant flap deflection, 5f = 60°•

Generally, the aerodynamic forces are functions of the forward

velocity (Uf), vertical velocity (Wf), pitch angle (e). blade collec-

tive pitch angle (8), and the control inputs. However, for the XC-142A

model, there was no cyclic pitch control and, the ailerons, differential

collectiw, etc., were assumed to affect only the lateral-directional

equilibrium. Therefore, for a space-fixed axis system, the force

equations for steady level trimmed flight are:

x (uf,wf, (1)
zf(uf,w_e,_)=,gJ



Therefore, the descent conditions were simulated by rotating the model

about its pitch axis, thus stipulating that the test or true model

pitch attitude (e) was precisely the model angle of attack (m), as

_hu_u o_ figure 8. For each of the test canes studies, this pitch

attitude remained constant. Force balance considerations were then

used to define the actual descent angle, by,

zr s_ 7 = _ cos_ (3)

or

xr
tan7 =_

Zf

Since the horizontal velocity of the model is determined by programming

_e carriage, it is not necessary in the model tests that the horizontal

forces be in balance.

It should be noted that the model was constrained to fly parallel

to the horizon along the space X-axls, (i.e., the test track)s thus,

simulating an inclined horiz¢_1as shown on figure 8, rather than an

act,_ descending flight path. Since the horizon is so inclined, an

aerodynamic pitch attitude (0a) can be defined as the angle between

this artificial horizon aud the bod_ principal X-axls, again noted

on figure 8. This will be the pitch ankle o_ the alx_raft in descend_

_ flight.

mw ,,3_e arA, lc_t_m_ force (xt) _ _ _reet._r by

a 8t.rain gauge, thtm knoma far the _ emblnatlonm of Uf_ O,

p. _IreetmM_t of the_e_ vertlea_fm_e (zt) _ _ .



not available. To determine Zf, the model was rolled through

degrees as shown in figure 8, and the horizon referenced side force (Y)

measured. The relationship for obtalning the space vertical force

is then

Y Y (for small angle
zf= _= (4)

sin _ _ approximation)

When substituted into the descent angle equation, this yields:

. xf
= t_'l_ (uf,e,_)_ (5)

Samples of the static data used to determine the horizontal and ver-

tical forces, and thas the descent angles, for each test case are

shown in figures 9 through ll. A susnnaryof the test conditions,

including the descent angles computed by the above equation, and the

aerodynamic pitch angle (ea) are presented in table I, _rlththemodel

geometric and inertia characteristics outlined in table II. The

details of other pertinent procedures and testing techniques appli-

cable to this study, regardlng the stability at_nentationusedonthe

model, model trim, and aileron effectivenesss are discussed in

reference 22.

8in_le-de_:ee-of-freed_ dTn_tc reeponaee were evaXuLted for

e_h o_ the flw c_e,, to aetem.'tne ,,h_ _ dL,_1,_ (_) m_ the

m_mnt of inertia about the yaw axis (Is). For tllw_ rmm, the model



lO

was locked in roll. Mecb_nlcal springs were attached between the model

and support tube to provide a restoring moment about the yaw axis. The

equation of motion for the rigid-body oscillation of the model in yaw_

•dth mechanical springs, aerodynamic damping_ and mounting friction is:

•. (_)N n) _)N,_ 0 (6)Iz_ + 3-_+ frictio _ + O-_

For these experiments, the model mounting friction was determined from

power-off tests. The mechanical'spring contribution, _N = K#m, was

calibrated separately and found to be (-31.7 ft-lb/rad). Spring-

restrained single-degree-of-freedomruns were also performed with the

model motors off and the carriage velocity equal to zero (Uf = rpm= O)

to determine the model yaw moment of inertia. The yaw damping runs

were conducted by releasing the model, with propellers running, from

an initial yaw angle offset. An example of the resulting time history

plus one for the model motors off are shown in figure 12. These time

histories, along with the knowledge of the _rlng comstaut and m@a_nt

of inertia, provided the total aero_amlc plum mechanical spr_mg

damping.Themechanicaldamping,as de_ frommodelmotors

off data, was slm_ly subtracted out, resulting in the true ae_c

du_la$ for the first cue. Simce the model exhibited stable _Lrs@- I

!

t£G_al stabillty in the first test co_ition; the mescal
I

were mot umed durlag the remai_ _i@_t @ml. It ahcmld be _

that ao sing£e-_-of-_ rum _ made te detmmlne the

_In_ emd roll mmeut of lae_la. Am aa e_ti_, _o_e,

the r_tio of the _ of lnerbia tn 7_ _.or t_M _t to

\

' !
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of reference 19 was used to determine the roll moment of inertia.

Furthermore, the roll damping moment for the level flight case of

this investigation was assumed to be equal to the value determined

in the level case (iw = 30°) of reference 19, resulting in the slightly

lower ratio of roll damping to inertia (hereafter simply the roll

angular rate damping). A summary of the slngle-degree-of-freedom data i

for the test runs analyzed for each case is presented in table III.
i

Multiple Degree of,Freedom

For each of the descent cases, lateral-directional transient

response measurements were conducted for the following degrees of

freedom: two degrees of freedom in roll and yaw (_ - $); two degrees

of freedom in roll and sideward velocity (_ - vf); three degrees of

freedom in roll, yaw and sideward velocity (_ - _ - vf). The equations

of motion for each of these conditions are presented in appendix I.

No mechanical springs were used for any of the multiple-degree-of-

freedom tests, and for the data presented, only pitching motions

were stability augmented.

The procedure followed during one of these multiple-degree-of-

freedmm tests was to bring the model motors up to speed vith the

model locked, relative to the boom, on the statlcmary earrlage. '_he

carriage na accelerated to the trim rpeed, earl timers vere ueed to

mmlock the uchanieal restraints of the desired del_'ees of free_m.

_he _ va8 then pemitted to fly freely in any desired e_Anatlen

of &4_'eu of freedom. For sQmeof the rum, eithera _ _ he_

offxt, _ eontreldefleeti_ were _ed am in _ to e=oite

""-.._L_,,, _ - -- - _....,,.____.....:.... ,u!,_ 'J ._-- ,-- --__r _..!I.!L__Jlll l!l_...... L I .._ LJ- " " . -,_ _,.--,

.._.. ...... .

!
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model's rcsponsc, though in some cases a small random disturbance was

sufficient to start the motion due to the unstable nature of the

dynamic s.

Sample results of the lateral-directional dynamic tests for the

five cases, which include level flight, are presented in figures 12 •

through 31 as time histories of the transient response of the model, i

The period of the motion and the damping ratio for each of the multiple-

degree-of-freedc_ runs analyzed "ispresented for each ease in table IV,

with the corresponding roots of the model transient responses summarized

in figure 32.

J

V

, :

......... z i-_,_ _._ ,,-
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FULL-SCALE AIRCRAFT DYNAMICS

The analysis of the experimental results, as discussed in appendix I,

along with the application of the scale factors discussed in appendix If,

permitted the full-scale,body axes stability derivatives to be deter- ::

mined. These stability derivatives are presented in figure 1 _

function of descent angle. '_e dashed curves indicate the probable

trends of the derivatives, as determined from test cases 1,2, and 3.

The effects of a change in the propeller blade an_e (_)_ case 4, and

subsequent change in the forvard velocity (Uf)_ cane _, are also sho_n

in figure i, by the rectangular and triangular symbols respectively.

Also noted in figure 1 are the results from reference 25, vhich rill be

discussed later as applied to the level flight case. The data resultlng

from descent angle changes, cases 1,2, and 3, _ be discussed separately

f_ the data representing aerodynamic changes, cases _ a_d 5.



not known whether the roll damping would increase or decrease as the

descent _:_lc steepened, therefore, variations in both directions were

_alyzed. _le results showed that an increase in the space axis roll

ii damping _as would have been measured from the t,-ackdata) caused the

i
j body axis values to increase unrealistically for the higher descent

I angles. On the other hand, a reduction in the space axis roll damping,
I

I for higher descent _les, resuAted in a _..Ig_tincrease in the final

body axis value, as shorn in flgure i, cases 1 to 3. This trend in the

roll rate damping was acceptable be-ause these values, along _rlththeI
i

other stability derlv_tives involved, were consistent with the dynamic

motions measured for these descent cases. Such a variation in the roll

dam_Ing vas also considered reasonable because it can be attributed to

an increase In llft on the wings, at the higher angles of attack associ-

ated _rlththese steeper descent angles, a condition that _ruld be

expected prior to _rLng6ta_l.

Yav_nt D_eto no)Ahate(Kp)

This cr_ss derlvat.4.ve is negative - the sign generally assoclatmd

_rlthconventioruklaircraft (ref. 2_) - resultir_ _ the unsymmetrlc

*, ilft distribution ou the vinp while the alrcra_ is rolling. The

m_nitude remains court,at constant, though fal_ off sllghtly at the

hLsher descent angle. .mhls reduct$oci N_y be attributed to s _a3_er
F

tall contribution and/or U_)lmetric_ stall effects oo & t$1t-_JNB

c_f_tioa that is rolliM clu_LM_c:en4i_ fliSht.

1974024326-027
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Yaw Damping (Nr)

This stability derivstive is stable for level flight and becomes

less stable as the descent angle increases. For the largest descent

augle, in fact, the damping becomes very slightly unstable (positive)

_'_ich arises, most likely, from interference on the vertical tail

particularly at th_ low speeds being investigated.

Rol_ Moment Due "coYaw Rate (Lr)

The rolling moment due to ykw rate is another cross derivative

which has a sign (positive) that is typical for conventional aircraft

(ref. 24). The value of the derivative decr£ases for th_ first descent

case (-9°) but increases positively for the higher descent case. The

explanation of this trend appears somewhat di£flcult and is probably

the result of the complex airflow interplay between the wing and tail

surfaces.

Dihedral Effect (Lv)

This stability derivative exhibited a stable (negative) tendency

for all the descent case_ analyzed. Its value is large for the level

flight case - comparable to that found in reference 19 and becomes less

stable as the descent angle increases This trend may be caused by an

onset of stall on the advancing wing, permitting the opposite wing's

lift to become more effective with descent angle.

mrectio_Z Stability (.v)
i ! l

The sign of this stability deriv_tive indicates the aircraft is

directlonally stable (positive) over the range of test conditl_as.

The magnitude appears to remain constant with a slight inorelume in

,g

1974024326-028



16

stabil_ty noted for the larger descent angles. The value of Nv for

the level flight case is in good agreement with the value calculated

from the approximationbased on the fact that the free-stream velocity

on the vertical tail is the primary factor coatributing to this deriva-

tive. From reference 24, assuming negligible sidewash, and a vertical

tail efficiency factor of one, the directional stability can be written

as :

Nv = izUof

and was computed using the following

AT= 2 per radian

Iz = 270,000 slug-feet squared

_T = 23.5 feet

ST = 130 square feet

Uof = _7.8 feet per second

resulting in

Nv = 0.0016 per foot-second

Sideforce Due to Lateral Velocity (Yv)

This stability derivative was found to be small and als_ remaimed

fairly constant throughout the range of test conditions. !

For the above descent cases, the data indicated that the d_mmie

motion of the full-scale aircraft in level flight _ stable. The i

/ rolling mode would be convergent, with a time to one-half a_litude

of 0.91 second , vhile the spiral mode vould also be stable having

a time to mac-half amplitude of 49.3 sec_ls. 2he Dutch.roll

1974024326-029
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oscillation wcu!d be approxima_,e!y neutral with a period of 8.4 seconds

and a time to one-half ampl|t_id_ of 158.0 seconds. The results for the

second and third descent cases indicgte the dynamic motion of the full-

scale aircraft was similar. That is, both cases exhibited a spiral

divergence, a rolling convergence, and a stable Dutch-roll oscillation.

I Specifically, for the 5° descent (case 2), the period of the Dutch-roll

mode would be 7-9 seconds and a time to one-half amplitude of 53.0

seconds. The rolling convergenc_ would have a time to one-half ampli- !

tude of 0.9 second, while the time to double amplitude of the divergent

spiral mode would be 8.4 seconds. For the ll° descent (case 3) the data

indicated the Dutch-roll period would be 8.4 seconds with a time to one-

half amplitude of 8.1 seconds. The rolling convergence would have a

time to one-half amplitude of 0.9 second, while the time to double

amplitude for the spiral divergence would be 2.4 seconds.

AERODYNAMIC CHANGES

The test conditions of cases 4 and 5 were added to determine the

effects of very limited aerodynamic changes for a particular descent

case. Specifically, a reduction in the collective blade angle (_),

from 13.5° to ii._°, was ;he only change made for case 4; further I at

this new blade an@Is setting_ the model test velocity (Uf) for c_se 5

was increased from approximately 18.5 feet per second to 24 fc_.tper

2

_j second. The equivalent full-scale velocity for these two values are

;_; 58.5 _s (_.5 knots)and 76 _s (45 knots), respectlveJ_V.

The stability derlvatlves calculated for the _t two ca_es arm

c_ to those of the _escent cues _ fiKure 1. OensTe3_y_ the

_g
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results indicate that very little change, if any, was realized for the

reduced blade angle setting case. Increasing the velocity shows that

the effect on the stability derivatives was in the same direction _s

compared to case 4, though, ior tae most par.t, resulting in a much

larger magnitude change. The only exceptions were those trends

indicated for tb_ dihedral effect and the sideforce derivative which

were opposite to those realized in case _.

The forward velocity effects, particularly regarding the side-

velocity derivatives, are at best very difficult to explain. This is

so because of the unknown interaction between the body, wing, and tail

airloads, as affected by the free-stream and/or slipstream, particularly

for a descending tilt-wing configuration. For example, a variation in

lift, which may explain one stability derivative change would not

necessarily explain a change in a different stability deriv_tlve.

Generally, it can be said that tiledecrease in Nv is caused by a

wake turbulence or interruption of the flow at the vertical tall -

for the steep descent cases. An increase in the sideforce derivative

can be attributed to fuselage impingement, while the larger negative

value of Lv results from the chemge in lift experienced on each

wing.

_ The dynemic motion of the _Ll._-ecale aircraft computed for case 4

_ vas almost identical to that of cue 3. Apparently_ as discussed above_

_ a c_ _ the blade collective pitch setting alome did not greatly

alter the d_Lcm. _he model results indi_ste that the i_t11-soale '
Ltraraf_ wouldexhibit a stable I_toh-roll oeeillat_c_ with a partod

ot 8.1 eeQ_xleenda thae to ono-hsl_ IpLttu4o of 9.1 Nconde. _he

- -:_ _: -,_ .........................." " me _ ............... __1--_T-.... "" ...........
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rolling convergence would have a time t_ one-half amplitude of 1.0

second, while the spiral mode would be divergent, with a time to double

amplitude of 2.6 seconds. The model results for case 5 indicate that

the full-scale aircraft wF-ld exhibit quite a different dynamic motion.

Specifically, an unstable Dutch-roll type o:cillation was _played,

one that would have a period of 8.2 seconds a_d a time to double

amplitude of 49.0 seconds. The rolling mode remained convergent, and i

would have a time to one-half amplitude of 0.9 second, while the

spiral mode would be less divergent with a time to double amplitude I
i

of 9.6 seconds.

The results for the level flight case are, for the most part, in

good agreement with the level flight results of reference 19. The only

stability deri_atlve that differs noticeably is the yaw moment due to

roll rate (_). The value found in the present study is of much larger

magnitude and different in sign, that normally exhibited by conven-

tional aircraft (i.e., negative). It is this term that apparently

contributes to the slightly stable spiral mode, noted herein, another

result that differed _rlth the level flight ease of reference 19.

These differences would be attributed to:

(a) The slight alterations in the testing procedure used during

these investigations are noted in reference 22.

(b) The configuration of the model used in the present study
_t

-., to achieve level flight, partlcula_'_ _ = 400t as e_d to the

i w - 300 c_tion used in reference 19.
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The overall descent results appear to lend themselves to the dis-

cussion on descending flight in transition found in reference 2.

Similar to the descent results noted in this reference, no wing

buffet was encountered throughout the descent _le range oZ the

present study and, by this fact, the feasibility of much higher des-

cent angles is not known. It is believed, however, that any additional i

descent angle capability would be slight, because of the proximity of

wir_ stall and the onset of poorer dynamics indicated by case _.

It is also interesting to note that for direct data comparisons

the computed stability derivatl ;es presented herein compare favorably

to thoqe reported in reference 2_. For the appropriate wing angle case

(iw = 40°) that is comparable to the level case of the present result,

all the stab_ licy derivatives are in close agreement with the exception

of Nv and Lr. These _ifferences are evident in T'igure 1 and may be

attributed to the variation in the testing techniques between the two

studies. In addition, the trends in the roll and yaw damping stability

derivatives as a function of descent angle# noted in reference 25, are

in good agreement with the present results, again when the testing

procedures are considered. Specifically, the descent conditions of

reference 25 were achieved by changing the propeller rpm for a con-

stant model angle of attack and _ incidence. This was not the

procedure used to simulate descent for this studyj therefore, it is

fair to say that the descent cases per se are not directly com_a_le.

The test conditions of the present lnvestiSat_on that are _re in

line with those of reference _ are si_ t_e for 1_IQh the

,q
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angle of attack was held constant while some other parameter related

to a change in thrust was varied. Clearly, this type of change is

represented by cases 3 to 5. Comparison of the stability derivatives

for these cases with those of reference 253 -that iss y_w damplngj roll

damping, and directional stability, indicate that the results are in

close agreement both in magnitude and trend. The only exception is

that the yaw damping results do not agree. Again, thls difference

may be accounted for by the testing technique usedj in that the damping

term found during the forced oscillation tests of reference 25 was

(Nr - N_), from which the yaw damping (Nr) can not be separated. (Note,

N_ results from the yaw moment due to the rate of change of sideslip

angle. )

• _' L_
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CONCLUSIONS

A O.l-scale model of the XC-142A V/STOL transport was tested in

the Princeton University Dynamic Model Track while in low-speed level

and descending flight. The test cases included various descent angles i

at constant speed, and two conditions incorporating aerodynamic changes /_

at the steepest descent. On the basis of the model results, the full-

scale aircraft in level flight would be dynamically stable. A degrada- _

tlon in the aircraft's dynamics would be experienced as the descent

angle is increased, to a point that for an ll° descent, the motion

would be made up of a rolling convergence, and a lightly damped Dutch-

roll oscillation and a spiral divergence with a time to double

amplitude of 2.4 seconds.

The first aerodynamic variable change, consisting of a propeller

blade angle change for an ll° descent t did not significantly alter the

aircraft's dynamic motion, as compared to the original ll° descent

case. However, for the second aerodyasmlc variable change, which

consisted of increasing the airspeed in the reduced blade angle con-

dition, the lateral-directional dynamics become more unstable, charac-

terized by an unstable Dutch-roll oscillation with a t_ne to double

amplitude of 49.0 seconds.

Generally I the overall results appear consistent with the theory

used for the analysis and c_ut_tlcm of the stability derivmtlves.

In addition, the results and trenda e_e in _d e_elmnt w_th the

limited dats a_le _ stnL/a_ studle8 pre-v-lous3_y m_.
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APPENDIX I

ANALYSIS OF DATA

AXIS SYSTEM AND EQUATIONS OF MOTION

Model motions were measured with respect to a moving carriage;

therefore, it is more convenient to use a spuc_-flxea axis system to

aualyze these motions rather than. the more conventiom_L stability '1axis system. The Xf-axls is located along the direction of the motion

of the carriage, with the Zf-axis perpendicular to it, positive down- !
ward; the origin of the axis system is placed at the pivot point where ,

the model is attached to the vertic-_l llnk. The general body axis and
_v

space axis relationship is shown in figure 33. For the analysis pre- _,

?

sented hereln 2 _, the angle between the model principal axis and fuse-
T.

lage reference, is assumed to be zero. Thus, the amgle _, shown in

figure 33 is exactly equal to e. The order of rotation used to

relate the body and space axes are as follows:

F

(i) _ rotation about Zf (yaw gimbal)to aline Xf with

roll axis

(2) 0 rotation about X' (roll gimbal) to aline Y' with _ ,
pitch gimbal _

(.5) O rotation about _' (pitch slndpsl) to aline X" with _ :
aircraft axis

" |

The resultant aircraft angular rates expressed in terms of the opa_e

axis rates are: *_
T

@

r - 4,.o, 0 Qo,o + O,in e 171
@ •

a..- o+, ,m.Ill :. ;
]

.................... ..... • _ / .... _ ..... _ _._ .
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When _ is assumed sn_Lll_ the above relationships reduce the

equations (2) of reference 22

p = cos e - i sin e

,-,,__o,,e+__,_e (8)

Differenttating, the angular acceleration expressions are:

p =_ cose - i' o:l.ne

_-- _ _o_e+_I_,_e (9)

_..'_

Using the vector equivalence for rates and mcmen'tel _hat 18_

the =st,e expressions bee_m*

=_eo.o-II 0._,,0

sa - abao.o ,o,_ _ o (_)

%-%

_L_e _ _ ar_ 4_1a m._ vX,'_tim _ 8qi4_r

al_._nurLnnSnnmol'_laqpeem_LaNnoOmim8_ ttz,art_ nnmant_ _,_

'" .- "_._- _,...-_..,_,_"1. m- ,

, .,,, .:,:__ __.... .,, ..",,.=,,_,i..,,....,., .."._,.'.'=-,-_'_ ,_
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of equations (ii), to solve for the gimbal moments as a function of

the body axis moments_ the results are:

LG = LB co_ e + NB sin 8

(12)

NG = NB cos e - LB sin 8

The general principal axis equations of motion (refs. 24 and 26) are:

Ix_+ qr(Iz-ly)- (_+_)Ixz=
(13)

i_ +m(iy- iX) - (# -qr)Zxz :

Dropping the terms having products of rates and substlt_img these

into equations (12)

I_._6oo.e-Ixz_ooso+Ij,sine-I_6sine
(i,_)

_O " Izr cos e - Ixz_ cos 8 - I_jc_ sin e + Ixz; sin e

Finally,substitutingfor the bo_y-ax_sangularamcelerstlonaemA

combiningmoefficlen_sof the spmoe-mxisangularaccelerations:

1974024326-038



letting,

Ix cos20 - 2Ixz _in O cos 8 + Iz s!ngO m Ix '

Ix sin2e + 2Ixz sin e cos O + IzCOS2e m Iz' (16)

(Iz - Ix)sin e cos e + (sin2e - cos2e)Xxz m Pxz

the general equations _'orthe roll and yaw gimbal axes are then

Ix' +Px,;"@ (17) ,

•rz,"_ + Px;_J - NG

The appropriate gimbal axis moments ,rodcross product of inertia were

computed for each descent case as a function of the pitch angle eI

and are shown below. (Body inertlt_ are given in table IX).

F'

7 e-_ ea-=+7 Ix' l,.' Pxz
li , i,i i

Cue 1 oo oo 0° +_.0 +_.1 ..0.2
i i iiim

c_,e2 ._o 1o° _o +2.9 ._.1 o
i ii ii i i -"

C_e _ - 5 .._.o zoo 9° _.9 .,._.3. _.2
.! ....

_ bo_ axis veloot_les are related to t,be _ vel_tties

i the m o_'IP4 trsnsfm'msttm otrtlla_ al)o_. ALX ot _ vel_lt_

eXl;re_f,o_ for taw _ mdJ_w_L_l_ in terl at t_e m axts

t

•_ i . " ....... __

II "' ' ''_ , . ,......... .,

ii
iI
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in figure 34. Again note, for the present study, e is u_ed in place

of _. Using small ang],e perturbations, the most significant veloci_

expression is

v = vf -uof+ (zS_

which will be used to convert the three-degree-of-freedom equations to

the gimbal frame of reference.

The llnearized, small perturbation lateral-directional equations

of motion are:

0

0 (19)

o

Yor the present stud_, tho_h, theme equations were moulted to the

gtmbal axis notatiou by: first, _ccmmt_ for the inertia d_t_ferences

_n the ro_l_ and yawing moment e_umtloum; second, substltut_ the

ex'oresslon for the body sideward velocity term. TbHe substttutloos

rAela:

*,fvt- Oo_vf,- m_r+ _ - o

_,..--%_.,+,_ +_ - _ - . o
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Note: _ne _ coefficients can be exp..ressedas Y_, L_: and N_,

respectively, in the above equations.

One additional correction must be _de to account for the "non-

lifted" mass of the model support and gimbal system. Defining m_ as

the total traveling mass, equal to the su_ of model and linkage equip-

:ent, and m, as the total _mss lifted (i.e.) -_)_ the term _MBed in "_

the lateral velocity equation may be modified by th_ ratio :t

mr. This i
term effectively reduces the lateral acceleration produced by the

given thrust, since this is less than the tot I weight of the moving

system.

Since no dynaLie tests were made with contIol inputs, these terms

are not included. Other us_wptlons impllclt in this form Lrez the

vehicle is in level flight; the time rate of change of the product of

inertia and a_ment of inertia terns is neg_,_ible. Althot_h the effect

o1' the ]_roduct of Instils (Ix:) could be nesleeted, It _as

because the method used to simulate the descent ang_ caused the pro-

duct of inertia to be sore significant at the steeper descents.

Yae space axis equations of motion in operstor fora_ with the

eass eoaT_tl_ term are l

( _"4_tvt + (z_Is- saw + _ • z4s. _r - o (ZL)

=,,,,K* - _'_ • (n_• qs- @,,- o

.............................. ....... , ,.,_ ..... -, ,_....... ......... ,,. . . :'_. _,".
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The nontrivial solutions for vf, _, _ are realized through the

charact_,ristic equation

Yvf mt S1
- _r g Y_,,

Lvf (L#- S2) (L_+ L_S- Px--_zS21 = 0 (22) _

Ix' i( xzIN_s--- s2 (N,+ -Nvf Iz'

The natural modes of the aircraft motion are determined by the

roots of the characteristic equation, that is, the values of "S"

satisfying the above expression. Use of a space-fixed axis for the

lateral-directlonal equations of motion results in a fifth-order

system, or a fifth-degree c_aracter_stlc equation. Since the con-

stant term in the equation is equal to zero (ref. 19), one root is

zero and remains so whenever .yawangle rather than yaw rate is used

as a variable.

For the restricted degree-of-freedom tests_ the reduced set of

equations that apply are:

(i) Single degree of freedom in _, (vf = _ = O)

s,+_s -s2.o (23)

L

..................................... ' .. " " __ _'" _j.'?__,_y_r

•w ....

..... ...._- ............. _..-,,-_--........
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(2) T_o degrees-of-freedom

(_) _-_, (vf=O)

(_s - P___a_s2 _,+ N_s- saIz'

(b) ¢-vf, (_,:0)

|

|

!

!
i
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DATA ANALYSIS FOR CASE i (LEVEL FLIGHT)

Single De6ree.-Of-Freedom

For each test case 3 the above equations were used to experimen-

tally determine the lateral-directional stability derivatives of

interest. Initially, for the level case, a yaw degree-of-freedom run

_as made with the model motors off (run 92, fig. 12). From the period _"

of the motion m d = 2.75 1/sec was determined, and knowing the mech-

anical spring constant to be -31'.7ft-lb/rad, the yaw moment of inertia

was computed as 4.1 slug-ft 2. Using the average values for the period

and damping ratio, from table III, the single-degree-of-freedom root

was determiued as S = -0.33+_J2.86. Substituting into the single

degree equation, the results are:

N_ ---0.67i/sec

N_ (mechs_lical plus aerodynamic) = -8.41 i/sec 2

Eliminating the mechanical spring contribution, the N@ (aerodynamic)

is _----8.41- (-7._8)- -0.83i/sec2.

Degrees-Of-Freedom

With the single-degree-of-freedom data emalyzed, the roll and

yaw coupling was next examined using the concept of rotating time

vectors aua mode ratios am discussed in reference 27. For the parti-

cular set of e_uations use_, it is more o_venient to use the

ratios rather than solving the system eharamterlstle e_tlon.

i
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The idea that the oscillatory motion of a system described by a

linear differential equation can be represented by a vector rotating

about its tail forms the basis for use of time vectors. The length

of the vector is proportional to amplitude of the oscillatory motion _

of the system and the damped natural frequency is represented by the

angular velocity of the vector. If the oscillatory motion is damped,

the vector length will decrease with time; if undamped, the vector

length will increase with time. For multlple-degree-of-freedom

systems, represented by a set of differential equations, the charac-

teristic equation of the system contains an oscillatory pair of roots

thus making it possible to represent the oscillatory mode in each

variable by its own rotating time vector. The time vector_ for the

different variables in a particular mode will maintain a fixed-phase

relationship with each other and rotate at the same frequency. The

amplitude ratio and the phase angle between two variables are constant

for a given linear system and do not depend upon the input or disturb- i

ance. The complex number relating the an_litudes of the two variables

and the phase angle between them is called the mode ratio. Note_ such

an approach is also valid when only one mode is present in the response;

therefore_ for the analysis following, it is assigned that other modes

of motion h_ve damped out. i

The relationships for the mode ratio of roll angle to yaw angle,

for the fro-degree-of-freedom motion in roll and ya_ s u obtained from

/5

"-'" .... " ............................... . . .... _._-_ .";-."_-_e, .-...... _ _r,-_,-_ ,. __ ..... _'A"_r - • l_l_n_ll
n

|_ ..........

i
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_xzs2
L@ + L_S - ----fix (26)

= s -

= s2 -N_ -_ (27)

N_ - ---PxzS2Iz'
-/

where "S" is the root of the characteristic equation corresponding

to the mode of interest. Since the mode ratio is a complex number,

two stability derivatives can be evaluated from each of the above i
equations. The phase difference between the roll _t_gle response and

the y_w angle response was -i15° (i.e., _ lags _ by 115°), as

determined from the data. The average amplitude ratio was 1.48_ thus

remaltlng the mode ratio _ = -0.63 - jl._4. The period and the

damping ratio of the oscillatory mode were 4.69 seconds and 0.129,

respectively, (S = -0.17 + jI.36). Using the values, L_ = -0.4 1/see

Pxz -0.067, the model space axis values for L_ and L_ were
and _ --

calculated using equation (26)_ and roaredto be:

_= +l.72per second

L_= +2._per second squared
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discussed in refereuce 19. _er_fore, the stability derivative N_

was added to the mode ratio, with the modification yielding:

N¢+_. -_Pxzs2
Iz _

Pxz

N_ and N_ were then determined using the values of N_, N,, I-_' i

S, and _ previously given. The results are:

N_ = -0.98 per second
W

N_ = +0.036 per second squared

The value of N_ is an order of magnitude less than that fo_d in
I

reference 19, thus corresponding to a very low, almost insignificant,

untried pitching moment.

The mode ratio relating the roll angle to the side velocity was

used in the same f_shion as _@ described above, to compute the

remaining derivatives of interest. From the _ - vf degree-of-freeaom

=is _fm I

vf g

A value of m-T= _..16 ,ms 8etemIJ_ f_m the s_tla dl_ta (Z. ST._ 11_,

_ mt = 1.8_ slugs). The phue _/Teze_ce 1_e%_een_e _ii az_le az_ t11_e

,i_e_ity __e i, _)o(_.,., vr _, ¢ _ _e_) ,
fzmm ti_ _ata.

........... _, ~
l
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The average amplitude ratio was 0.105, resulting in the mode _atio

¢
w = 0.02 + jO.l. The average period oi'_ne oscillatory moae was 6.1
vf

seconds with a dampina ratio _ = -0.14, the minus sign indicating an

tmstable oscillation (S = + 0.21 + jl.08). The side force due to side

velocity was then computed from equation (28) with the result,

Yvf = -0.2 per second. Using the derivatives already determined and

the fact that the side velocity and heading are related through the

forward velocity_ the additional stability derivatives of interest

were computed as follows:

Y_ =-UofYvf = +5.66 ft per sec2

Lvf - = -0.12 per ft-sec (29)
Uof

N_ = +0.045 per ft-sec
Nvf - Uof

The model space axis results for case I, along with those for the

additional test cases of this study 3 are shown in table V.

T_leaccuracy of the linear theory used to compute the stability

derivatives was examined by further application of the time vector

method described in reference 27. This was accomplished by constructing

the vector polygons for vario_s de6rees-of-freedom to establish whether

or not the po_ oloaed as re_u_m_d. 8pealficall_ the ter_ of the

particular _tua_o_ used vere added w__ tn _oo_nee v'J:th

appl.toa_.e me4p_._ and phue relat:tm'lehID.
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resulting magnitudes for each term, shown in this figure, were then

multiplied by the appropriate stability derivative, as dictated by

the equations of motion, and summed vectorally. The vector polygons

for the yaw moment equation and roll moment, equation for case 1 are

shown in figures 36 and 37, respectively. As noted, the polygons

close quite well indicating that the values computed and the technique

used are credible. Similar diagrams were made for other degrees-of-

freedom and for all of the cases of this investigation. Since all

polygons closed with apparently the same accuracy, only the _ - _ I

relationship for case i has been presented as an illustration, i

Three De_ree s-Of-Freedom

No stability derivatives were computed using the _vailable three-

degree-of-freedom data. The purpose of presenting these data was to

indicate the unrestrained motion of this configuration for the various

test cases and to provide an additional means of verifying the computed

results. The period and damping ratio for each case w_s determined

from this data. For example, from figure 16 (case i), the period of the

oscillatory motion is about _.4 seconds, and the damping ratio is

seen to be very low, approximately _ = 0.04. The roots resulting

these terms are 8 _ -0.06+_i._.

The space axis stability derlvstl_s of the model, as computed

from the _ta (table V), were umed to solve the characteristic

equation representing the gimbal axes as given in e ltmtion (22).

Slnce the constant term ::&_ approxi_te_ sere t for most cases_ the

equation _ s_plAfted to m qtwrtte. _he res_.ts for each of the eaoes

!

I
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are shown in root form, being

Case Roots (model space axes)

1 -0.014, -1.488, +0.076+_ji._62

2 +O. 154, -l._07, -O.O_o,_j±.op_

3 +0.458, -1.339, -O.090+_Jl.648

4 +0. 595, -i.300, -0.0_2+_jl.663

5 -0.028, -1.540, +0.154+_Ji.697

As can be seen, the value of th& oscillatory root determined for case l,

from the data, is in good agreement with the tabulated results. The

three-degree-of-freedom data for the remaining cases were also examined

and found to correlate with the solutions of the characteristic equations.

The general characteriztic equation (22) was also modified to represent

the body axis equations of motion by simply deleting the attitude ter_B.

The roots for the body axis dynamic motions of the model were then

computed using the unadjusted body axis stability derivatives (those

computed according to appendix If). These roots, given below, were

used to compute the period, time to double or one-half amplitude_ an_

the damping ratio associated with each mode and are presented for each

case in tables VI to X.

Case Roots (model ]x_ly axes)

1 -0.024,-1.280,-o.oe_l.eOO

2 +0.__I,-l._57, ..o.oa?_l.Z68

3 +0.668,-1.637,-O._Jl.2_
!

•o._87, -I._, _. o)2+_l._6_

e"
g

4,

!
i
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APPENDIX Ii

FULL-SCALE CONVERSION

The full-scale stability deriv_t±v_s calculated 1or t_levarious

cases of this experiment were determined from the model values in the

following n_nner: First, the expressions relating the space or gimbal

axis moments to the model body axes were solved t_ _:_a_er _he model

space derivatives to the model body axis values. Second, the model body

axis derivatives were then converted to the full-scale values. The

detal]s relative to these steps will no-#be described.

CONVERSION TO MODEL BODY AXES

To determine the values of the model body axes derivatives, the

rolling and yawing moments can be expressed as functions of the three

aerodynamic parmneters of interest during this study. That is, the

moment dependency on roll ratej yaw rate# and sideward velocity are:

_L _L _L

(m)

The equations for p, r, and v, as shown in appendix I, can be

substituted into the above moment expresslona, result£ng in:

i
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_lese body moment expressions can then be used in the equations relating

the gimbal and body moments (eqs. (12) and (17) from appendix I). For

the roll and yaw equations the relationships then become

,_+ pxz'_ = EL cos2e + L sin 8 cos 8 + N cos e sin 8+ N sinee]_Ix p r P r

+C-__ineoose+_ co._e-_ _i#e+Nroo._esineJ_

(32) I

" _ C. ,._'_3_Iz'_ + Pxz = p c°s28 + Nr sin 8 cos 8 - Lp sin e cos 8 - Lr

+[-_,in0cose+_ oos20+_ ,_2e-%s_ eco,e]_

Again note: L_ = -UofL v

N_ = -UofN v

Since the general equationss as written from equations 21 of appendix I,

_e

ee

..'_+,_- ,._+_;+'.e. *",'

I I II IIIIII ..... I -- I ....
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_ =½ oo_2e+ (Lr +.p)slneoose+Nr ._I.2e (34)

L_-- (-Lp+ Nr)cose sin e + Lr co-2e - Np sln2e (35)

L = Lvcos e ,N v,ln e (58)
v£

Nvf = Nv co, e -L v sin e (59)

- -_ofU,_o,, -Uof,';,,,In, (_o)

flrs_ four e_resstons hsve, as uz_:_ns, the four body axis

derivatives shownon the rJ4_t-hud side of these equsttons. _e

@tabs1axis vLl_ms, the left-bsed side of each eq_tlon, have been

determine4 from the 4st_ preseated. The lsst two lizm_lalis ot'

ett_er set represents two eqL_tl_s mLl_ two m]mmms. :In addttl_

to -,_ _mmnt Ilxl_essloas_ the side foa'_e_l_m (ramh
_.

in t_ _ smut; _ _ ,ms s_l_ cm to am,

.

I

I.
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• " " " -- w -' '* w _ ....

the side for::" _.uoto _ny _ _be an_llar rates _re considered

negligible.

Using the first four equations ((34) through (37)), the body

axis stability derivatives are solved a._functions of the remaining

body axis values. The first and fourth equations result _n an expres-

sion for Lp, vhlle the second and third yield an expression for Lr.

These expressions, _hen substituted back into the general equations

from vhich they vere determine_, result in tvo equations having ouly

Nr and N_ as the unknovns. Solving the tvo final equations simul- i

J
taneously yields the body derivatives, Nr and Np, vhich _re sub-

sequsntly used to determine Lp and Lr. For case i, the bod_ values

are equal to the gin_ v_lues because both axes _re alined vhen the

pitch attitude is zero. The equations also lead to this result when

e - O, thus establishing s check on the equations developed for the

analysis. As an exa=ple, the ec_putattcLs for ease 2 rill be shown.

For this case,

sin e - o.17 x_ - +1._ per ,,,c

eo,.

1974024326-054



_2

SubstltuKing Lp and Lr into equations (Sh) and (35), the pair of

equatlor_ resulting are

0._ _ - o.j_ "r _ 0.18

o.9_5_ +o.__. -0.65

Solving slmultaneously,yields

Nr = -0.4per sec aad _ =-0.6aper sec

which in turn from (I_2)yields

_ _,,- -o.1. _,@__°._ ,,- lo°
,¢

_ "t " +o.om. I, _o, W) - L, ,i.,o°
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Lv = -O.ll per ft-sec

N = +0.065 per ft-secv

This overs]l aDDroach, that is solving the set of four equations in

four unkno_ , and the last simultaneous set, was used to calculate

the model body axis stability derivatives for the r_maining cases.

All results are shown in tables VI to X.

FULL-SCALE DERIVATIVES

t

The second step of this procedure leading the actual aircraft's _

stability derivatives was the scaling up from the model body axis ,_

values, now known, to the full-scale value. Two calculations were _i

performed on each derivative to acquire the final full-scale values.

The first accounted for the difference between the scaled-down moments

of inertia of the full-scale vehicle and the actual model; specifically,

5.0
the rolling moment derivatives must be increased by a factor

k.l
while the factor -- must be applied to the yawing moment derivatives.

2.7

These adjusted model results were then converted to the full-scale

values by use of the scale factors for dyaamlc model similarity,

listed in table XI. The body axis stability derivatives for the model,

adjusted model, and full-scale vehicle for each case are presented in

tables Vl to X.

In order to present the dynamics of t_ full-scale aircraft, the

body axis equations of motion were adJustea to account for the fact

that the model was flying down the test trackp simulating descent, in

such a manner that the horizon was thought of as bei_ rotated, rather

than having the aircraft actually descending. On_v the aideforce
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equation is affected by this condition, and was rewritten to include

the appropriate components of track velocity and gravity. The modified

sideforce equation, as noted in reference 26, becomes:

_.Y = m_ + Ur - Wp - g(sin ea)_ - g(cos ea)¢_ (43)

where:

U = Uf cos

W = Uf sin

ea = aerodynamic pitch angle
between fititious horizon

and principal X-axis

Use of the aircraft's body axis eliminated all terms dependent on

attitude (i.e., N_ = Y_= L, = N_ = O)s the cross products of inertia

and permitted setting mt= 1. The modified characteristic equation
m v

then becomes:

Yv " S g cos ea + (Uf s._ m)s g sin m - (Uf-cos =)S
=0

_s -s2 n_s
N _pS _rS- s2

from which the roots fo:- the full scale aircraft were computed.

Although the order of the equation is quintic, the constant term for

: each case were &pproxi_tely _ero t end thus eliminated. The roots

,_ for tlm resulting quartle eharacterlstlc equation _m:

.......... M ,L_...... , _

• , , ,, , , , , , ,,

I
i
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Case Poots (full-scale body axes)

1 -0.014, -0.760, -0.O05±jO. 755

^ -r_ 0 0131_j0 791

5 +0.285, -0.779, -0.085+_)0.748

4 +0.262, -0.715, -0.076+_jO.783

5 +0.072, -0.7_, +O.014+J0.770

These roots are graphicaL_ presented on figure 58 and were used

to compute the period, damping ratio and t_me to double or one-half

amplitude of the various modes, for each case, as noted on tables VI

to X. It should be noted that the adjusted model axis roots _ e

also determined using equation (44) and used to compute the periods

damping ratios, etc., for the model: these results compared well

with those values scaled down from the full-scale results.

i
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TABLE I.- Sb_4ARY OF TEST COHDITIONS

All tests conducted at iw = 40°, 8f = 60° and model rpm = 4000
except where rpm = O as noted.

Fuselage Collective Descent Aerodynamic Trim Degrees
pitch pitch angle pitch velocity Run _igure of

attitude _.7_R 7 attitude j Uf Nos. Nos. freedom
_=_ 8a=_+7 l
(deg) (deg) (deg) (deg) (ft/sec)!

• , , |

17.8 91 _

i 0 9__*

! 102 _"

I 19.4 13
I io6

0 , 164

(casei) 13.5 o o i 17.6 14 _-_
166

f

179
f  8.4
1 182
J

20}
16 i_-,-vf

17.9 2o4
|, , , , ,a

213
17.8 17 *

210
17.7 _8 _-,

212

_0 i).5 -) 9
(Quee) 220

17.6 19 _-vz
ii i i

_._ 2o ._.,-v z

•* rpa= 0

i
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TABLE I.- Concluded

All tests conducted at iw = 40°, 5f = 60° and model rpm = 4000

except where rpm = 0 as noted.
. .m ,,,

J

7_Jelage Collective Descent Aerodynamic Trim Degrees
pitch pitch angle pitch velocity Run Figure of

attitude 9.75R 7 attitude Uf Nos. Nos. freedom
0=_ _ 8a=_+7

i (deg) (deg) l(ft/sec)
(deg) (deg) I

234

, , 235
I, 18.6 _

' , 22 ¢-_/
I ' 232

20 I

(case3) 15.5 i -zl 9 258

I 23918.4
I _47

1 i 24 ¢-_'-vft 248

281

18.1 29 _'
263

20 1&.5 t 2.,51 .........
(case _) I -..13. 9 f 18.8 26 _-,

29_t
i.. i zs._ 2-r _-',e
i 270323

326i
I

!

, 2_.0 _ _-,

m _-vr
I 2) , 6

, I i _t _.,.vti...... .......

!
i
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TABLE II.- MODEL GEOMETRIC AND INERTIAL CHARACTERISTICS _

Model weight, Wp = 49.9 pounds

Rolling moment of inertia, Ix = 5.0 slug-feet squared

Yawing moment of inertia, Iz = 4.1 slug-feet squared

Wing area = 5.5_ feet squared

cg position:

x = 9 percent mean aerodynamic chord
cg

iw=O

Zcg = 26.9 percent mean aerodynamic chord
below wing reference plane location

at iw= 0
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TABLE III.- S%rMMARY OF TRANSIenT RESPONSE DATA (MEAS_[RED)

FOR :3.1IIGLE D._II-H.ZEOF FRE'hlX3M

(¢ only)

-per ].od _ -per i od
Run (zec) _ Run (sec)

86 2.17 O.ii0 254 5.80 O.175

87 2.17 .ix) 235 4.50 .162
.Case J

88 2.z_ .]z6 ;_% 4.8o .z58

89 2.20 .116 Averagea 5.05 O.165

96 H._) .112

97 P. 20 .1±8

98 _. s8 . x_ _o 5. _ o. 2o
Case i

(with 99 2.30 .131 261 5.50 • 19
mech.

• cj •sprlngs) 102 9. PO . I00 Ca:;(:h ,_6,_ 5.80 21

io_ 2.15 . ].].8 _5 _. 5o •

104 2.:_O ..LO_) Averu4_,es 5.50 O.i_)

zo5 _. _ . lO8

].o6 2._ ._4 _, _.9o o.z8
Ill

Avex*,q_u ,_._-"') O.ll9 52.4 5.10 •17

21) 9._O O._20 Ceme 9 _29 5.10 •19

ca_e 2 2z_m 9._0 ._o _6 9.oo .z8
m i ,

Averages 5.)5 O.220 A'vex'eges _.9_ O.18
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TABLE IV.- _Y OF TRANSIENT RESPONSE DATA (MEASURED)

FOR MULTIPLE DLDREES OF FREElX)M

(Note: both variables presented)

] 974024326-066
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TABLE IV.- Concluded

)

l| ....... -- ' '

I
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TABLE V.- MODEL SPACE AXIS S'ABILITY DI,_IVATIVES

! Paraznet__-r Case l Case 2 Ca_e 5 Cr_ce 4 l Ca::e

" I !
N_, 1/see -0.67 -0._)5 -0.41 -O.46 -O._l

N_ _, 1/see 2 -0.8_ -±._l -l.66 -.L.49 -1.57

(=-UofN_)

_¢, i/:_e -0.58 -0.53 -o.13 -o.29 -o.33
I

N¢, l/_eo2 _.o36 -o. _ -o.ow -o.025 -o. _ i

•. Nv, 1/ft-sec +0.04_ +0.084 +0.09 +0.08 +0.066

L_, 1/sec +I.TP +l. 2_ +1.80 +1.76 I +1.28

_*, l/_ec _
(_ "UofLv) +2.20 +0.82 +].67 +I.48 +3.49

_**, 1/see -0.6_ -0._ -0.40 -0.40 -0.40

Lv, lift-see -0.12. -O.lO -.).06 -0.06 -O.11

Y_*, ft/se¢ 2 +_._ 44.71 +7.75 +_.13 +1o.9
(- -.Uo_Yv)

Yv, i/see -o._ -o._ -o._2 -o.17 -o._6

Uot, rt/s_,c 18.3 zS._ _8.5 18._ e,_.7

xf, _ '_.7 -_.3 -_._ -_.9_ -_.1

zf, _, _._ _.9 _.6 _._ _.o

,_, _.,6 _.m j _.m _.o_ _.oe

* __ws a_st _ _ _m_@f _ sz_Ls

_ •-: z ..... _----- ...... ............ ....".: 2.._.___

| ........................ _
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TABLE Vl.- BODY AXIS ST;_ILITY DERIVATIVES A_ PARA_,_I_RS (CASE !)
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TABLE Vll.- BODY AXIS ST_$ILITY DERIVATIVES AND PAP_$_T_RS (CASE P)

!

Parameter Model Adjusted i Full-scale

model I aircraft

I

Nr, i/see , -0.40 -0.61 -0.19

I Np, 1/sec _ -0.62 -0.94 -0.30

Nv, i/ft- sec +0.065 +0.099 +0.005

Lr, i/see +1.16 +2.32 +0-73 _

_, 1/see -o.68 -i.36 -o.43 _!

Lv,i/ft-se_ -0.ll -0.22 -0.007 _i

Yv,_/see -0.25 -o.25 -o.08 i!

Ix, slug-ft2 5.0 1.5 150,000

Iz, slug-ft2 4.I 2.7 270,000

Oscillator_ mode (Dutch roll)

Period, sec 5.4 2.5 7.9

Time to one-half amplitude (T1/?), sec 25.6 14.7 53.0

Damping ratio (_) O.02 0.02 O.02

First real mode (spiral) '_

Time to double amplitude (T2), sec 5.1 2.5 8._ i

8econd real mode (rollln_ mode) i

_Ime to one-half _lltucle (T1/2), see 0.48 0.29 0.92

i
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TABLE VIII.- BODY AXIS STABILITY DERIVATIVES AND pARAMETERS (CASE 5)

T ' ' !

parameter Model i"Adjusted I Full-scale
model aircraft

..Nr,i/sec. +0.14 i +0.21 +0.066

Np, ±/-'sec -0.30 -0.46 -0.15
}

Nv , 1/ft-see -0.O6 +O.lO +0.00} i!_

1/s o +1.65! +1o5T., 1/see, -0.9_ -1.90 -0.60

1/ft-_ec -0.087 -0.174 -0.006W, #

YV' 1/see -0.I'2 lL -0.42 -0.15

ix, slu__ft 2 5.0 ! 1.5 190,000i

iz ' sluE.ft 2 4.1 2.7 270,000

Oscillator_/ mode (Dutch roll)

Period, sec 5.1 e.6 8.4

15.4 2._ 8.1
Time to one-half amplitude (T1/2), sec

Dmnplng ratio (_) 0.0_ 0.]2 0.]2

First real mode (spiral) i

.Time to double amplitude (T2), sec 1.03 l=b
0.76 2.42

Seconcl real mode .(roLlln_ mode)

Time to one-half amplitude (TI/2), sec 0._2 i 0.28 0.89

f
i

1974024326-071



59

TABLE IX.- BODY AXIS STABILITY DERIVATIVES AND PARAMETERS (CASE 4)

.....
- MPars2_eter od Adjusted Full-scale

• model aircraft

Nr, 1/sec +0.02 +0.03 I +0.01

Np, 1/sec -0.44 -0.67 -0.21

Nv, l[ft-sec +0.055 +0.083 +0.003

Lr, i/sec +1.61 +3.22 +1.02
i

z_, z/_e_ -0.88 -1.76 -o.%q

Lv, i/ft-sec -0.08_ -0.168 -0.009

Yv,l/sec _.z7 -o.z7 _.o94

Ix, slug-ft 2 _.0 1.9 ' 190,000

_, slug-ft= _,l 2.7 270,000

Oscillato mode (Dutch .... }r7 _ __ To:L1.

Period, sec 4.9 2.6 8.1

Time to one-half a_1.itu_ (_I#2), seo _.g 3.3 ! 9.1

Dam_Ing ratio (_) O.0) O.lO . O.lO

First reel mode (Splral)_

_ cL_ze==_ct_= (_a),_,e z._ 0.92 i 2.63
seeo_ re_k=cxte(toWn,made)

to o,=.a_' ==_ame (_./21,_e o._ o._z I 0.961
,, , ......... , ,,,. ,=,.= • ,. -

4, 3_"" '_; " ' _ _ " " "h_ ,,_....

.......... _ .L _, _1,,= ,_ I i£__ I III ;"

I ................ "...... I
i • • I I II -- IlII--- _= - = -_'

I
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TABLE X.- BODY AXIS STABILITY DERIVATIVES AND PARAMETERS (CASE 5)

" J ^_justed i _7-scale

Parameter M°de± I, model [ aircraft

Nr, 1/sec -n.ii -0.167 -0.053

Np, 1/sec -0.45 -0.68 -0.21 _•

Nv, i/ft- sec +0.024 +0.036 +0.001 _

IT, 1/see +i.16 +2.52 +0.75

Lp, i/see -0.69 -1.58 -0.44

Lv, 1/ft-sec -0.125 -0.25 -0.008

Yv, 1/see -O.46 -0.46 -0.15

Ix, slug -ft2 3.0 1.5 150,000

_, slug-ft2 4.1 2.7 270,000

0scillator _ mode (Dutch ro11)

Period, sec 9.2 2.5 8.e

Time to double amplitude (T2), sec 5.8 10.2 49.0

Damping ratio (_) -O.15 -0.02 -0.02

First real mode (spiral)

Time to double amplitude (T2), sec 6.6 5.6 9.6

Second real mode (rolling mode) _ ,

Time to one-half amplitude (T1/2) , sec 0.49 0.30 0.89 _ '
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TABLE XI.- SCALE FACTORS FOR DYNAMIC MODEL SIMILARITY

Multiply full-scale property by scale factor to obtain model property

For k = lO

Linear dimension A"I 0.i

Area l'2 0.O1

Volume, m_ss, force 1-5 O.OO1

Moment A"4 O.0001

Moment of inertia _'_ O.O0001

Linear velocity A-. 5 O.316

Linear acceleration k° I.

Angular velocity %.5 • 5.16

Angular acceleration A iO.

Time A-.9 O.516

Frequency A"9 3.16

Reynolds n_ber A-I. 9 0.0316

Math number A"9 O.316

model linear dimension
_ere _, - .........

f_,ll-seale linear dimension •



-0,I

0 I I !
0 -5 -10

Descentangle,degrees

T

I



63

-0.5

-0.4

-0.3

-0.2 _ "(_

=,- _ A

I I t 1

0 -5 -10
Descentangle,degrees

+L5 :

, I 1 I

0 0 -5 -10
Descentangle,degrees

]e'J4plz,e 1.- OoW_me4,

I
!

-, ,,.

............... "-.....-."-:...:._:.._,,'-_'_"_.,'!--'-" ......." ""....._............. " __'"-_...

t i
| --- .....

, I

1974024326-076



-.009

t I

1974024326-077





FIKure _.- Princeton Dyna_c V_del Track
lstersl/dtrecttona_ mount with one-

tenth sesle d_mantcslly stedlar model.

i
,,_
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Figure 9.- Static teet data; descent condition determination.

Romp input to roll attitude-hold loop. _.7_R = l_'_°_
_a = O, and _ • O.

1 ==..m,.i m .............. " '_'' '"- .,_ "

........... _ :.......:,:::.--_..--":::':_,/.,;...--.::.';............... "_-, D_'.I_..... '"_,
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Fli_,e 1_.- D_na_e test d_ltlij lsters_/dlrecttol_l transient
response. 2__ desrees-of-freedom, f v/_. e = O,
l_.T_l_ - I).P v, 7- O, and Ut = 18.1_ tT'see.
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Figu_'e 2-".- Dynastic test data; lateral/dlrectional transient

1"esI,onae. T_odegrees-of-freedom, _-_. 0 = 20°,

_.75R _ 15"[)°' 7 = -ll°, and Uf = 18.6 ft/sec.
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Figure23.-Dynamictest data; lateral/directionaltransient
response. Two degre,es-of-freedomp_-v_. e = 20°,

P.75R= I_'_°'7 = -11°, and Uf = 18._ £t/see.
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Figure 26.- Dynamic test data; lateral/directional transient response.

Two degrees-of-freedom_ _-_. O : 2oO_ _.75R = 11"50' 7 : -iiO_

snd Uf : 18.8 ft/sec.
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Figure29.- Dynamictest data; lateral/directionaltransientresponse.
Two degrees-of-freedom,_-_. e = 20O, B.75R - ii._°, 7 = -iiv,
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_% _:).- D_c test data; l_teral/d_ren*ional trsnB1ent reSP_o se.det_r.ees-o:f'-freedom, _-v:f.. I) - 20"', _,.75R " 1"]"5°" T - -1.1 ,

and U:I, = 2_.6 i't/sec.
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@- _ modedata

-- =-0. 63 - jl. 34

S =-0.17 + jl. 36

•" _n20¢ lags_ by115° _ =

-_-magnituderatio= 1.48

_= Wn*

0 =1.48

Figure 35.- Relationshipbetween the _ and , time vector6 and their

derivatives for case i. e = O_ P.75R = 13"5°_ 7 = Op and
Uf = 17.6ft/sec.
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Yawmomentequation:
P
x_._z;_ =o

_0 N@¢-N**- N_¢- N¢¢ + lJ
L

-N_

-N¢¢ Px__!;"
r

•

Figure 36.- Yawlng moment Rvector polygon .(Dutch-roll ose111atlon)representing two degrees of freedom (_-_) model data for ease
1. e = O, I_.75R = 1:5.5°, 7 = O, and Uf = 17.6 i_/see.

1974024.RgR-119



i00

Rollmomentequation:
P

_- L_- L¢¢-L**+ x__.Lzl,_ = o
X

P

Ix/ \

Figure 37.- Ro].liug moment vector polygon. (Dutch-roll oscillation)
representing two _egrees-of-f_ee_ (_-_) model _,_ for case

i. e = O, _.75R = 13"5°' 7 = O, and Uf = 17.6 ftlsec.
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Figure 38.- Characterlstic roots of the full-scale

aircraft motion for each teat case.
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